Allied Chemistry-I (for Bot and Zoo)

(Subject code:18UCHA11)

Semester: I Allied: A1 Credits: 4 Hours/W: 4

Objectives:

- To know the structure and properties of compounds
- To understand the concepts of redox system and types of reactions
- To identify the intermolecular forces in different molecules.
- To Study the chemistry of carbon and nitrogen compounds
- To know the synthesis of important amino acids.

Outcome: Students Can

- Identify bonding and structure of organic and inorganic compounds
- Familiar with the acid-base concepts and their applications
- Understand the role of hydrogen bonding and other molecular forces through different applications
- Get the knowledge of different functionalities and their properties
- Assimilate the importance of proteins and amino acids in biological systems.

Unit I: Chemical Bonding

Self Study: Atomic number, mass number, isotopes, electronic configuration of atoms and ions.

- 1.1.1. Valency and valence electrons
- 1.2 Electronic theory of valency
- 1.2.1 Electrovalency- conditions favouring electrovalency-illustration
- 1.3.2 Electrovalent compounds and their properties
- 1.4.1 covalency- conditions favouring covalency-illustration
- 1.4.2 Covalent compounds and their properties
- 1.5 Coordinate covalency-conditions favouring formation of the bond-illustration
- 1.6 Transition from electrovalency to covalency
- 1.6.1 polarisation and polarizability

- 1.6.2 Fajan's rules-statement and illustration
- 1.7 Atomic orbitals-Definition-charge cloud interpretation-shapes of s,p and d orbitals
- 1.8 Overlapping of atomic orbitals-conditions for overlap-types(s-s, s-p, and p-p) with illustrations-sigma and pi overlaps
- 1.9 hybridisation sp^3 in CH₄, sp^2 in BF₃ and sp in BeCl₂.
- 1.10 Geometry of H₂O and NH₃ molecules-VSEPR theory.

Unit II: Redox systems and analytical chemistry-I12 hrs

Self Study: oxidation, reduction, acids and bases.

- 2.1 Redox systems
- 2.1.1 Redox reactions in terms of electron transfer
- 2.2 Oxidation number
- 2.2.1 Definition
- 2.2.2 Rules for assigning oxidation number
- 2.2.3 Calculation of oxidation number
- 2.2.4 Redox processes in terms of oxidation number
- 2.2.5 Advantages and disadvantages of the concept
- 2.3 Acids and bases
- 2.3.1 Arrhenius concept –illustration
- 2.3.2 Lowry-Bronsted concept-conjugate acid and conjugate base
- 2.4 Types of reactions relevant to qualitative analysis
- 2.4.1 Displacement reaction
- 2.4.2 Decomposition
- 2.4.3 Double decomposition
- 2.4.4 Hydrolysis

- 2.4.5 Redox reactions
- 2.4.6 Complex formation (it it compound or complex formations, clarification required)
- 2.5 Interfering anions and their elimination
- 2.6 Group reagents and analytical group classification
- 2.7 Explanation and application of the following principles in qualitative analysis
- 2.7.1 Solubility and solubility product
- 2.7.2 Common ion effect
- 2.7.3 pH
- 2.7.4 Buffer solutions

UNIT III: Intermolecular forces and properties of liquids 12 hrs

Self-Study: pure covalent bonds with examples, electro negativity, conductors, insulators, boiling point, melting point

- 3.1 Polar and non-polar molecules
- 3.2 Dipole-dipole (Debye) forces, dipole-induced dipole (Keesom) forces, Induced dipole-Induced dipole (London) forces.
- 3.3 Repulsive forces
- 3.4 Resultant intermolecular energies
- 3.5 Hydrogen bonding-Nature of hydrogen bonding-conditions favouring hydrogen bonding-Types of hydrogen bonding-illustrations-impact of hydrogen bonding on melting points, boiling points and solubility.
- 3.6 Electrolysis
- 3.6.1 What is electrolysis-strong and weak electrolytes
- 3.6.2 Mechanism of electrolysis
- 3.6.3 Electrical units-coulomb, Amphere, Ohm and Volt, defiitop and sympols, usage.
- 3.6.4 Faradays laws of electrolysis and their importance
- 3.7 Conductance of electrolytes (conductance can be defined here and 3.7.1 can be removed)

- 3.7.2 Specific conductance and molar conductance-Units
- 3.7.3 Variation of equivalent conductance with concentrations

UNIT IV: Aldehydes, Ketones, Acids and Amides

Self Study: aliphatic compounds, aromatic compounds, Functional group of aldehydes, ketones and amides

12 hrs

12 hrs

- 4.1 Aliphatic aldehydes and ketones-Nomenclature-General reactions- Formaldehyde- a comparison with other aldehydes of the series.
- 4.2 Aromatic aldehydes-Reactions of benzaldehyde-benzaldehyde compared with acetaldehyde
- 4.3 Aromatic ketones-Aceton, acetophenone and benzophenone-distiction
- 4.4 Aliphatic saturated monocarboxylic acids-Nomenclature, general reactions-comparison of formic acid with other acids of the series.
- 4.5 Aromatic saturated monocarboxylic acids-distinction between benzoic acid and acetic acid
- 4.6 Aliphatic amides-nomenclature, general reactions
- 4.7 Aromatic amides-Distinction between benzaldehyde (benzamide ??) and acetamide.

UNIT V: Amines, Amino acids and Proteins

Self Study: Functionalities of amino acids and amines, Functionalities of proteins (nitrogen containing compounds)

- 5.1 Aliphatic monoamines
- 5.1.1 Nomenclature and classification-Primary, secondary and tertiary amines
- 5.1.2 General reactions
- 5.2 Aromatic amine-Aniline
- 5.2.1 Reactions of aniline
- 5.2.2 Distinction between aniline and ethylamine

- 5.3 Amino acids-classification-zwitter ions-isoelectric point-preparation and properties of glycine and alanine
- 5.4 Proteins-introduction-peptides and polypeptides-partial hydrolysis and terminal residue analysis in the determination of structure of peptides.

NOTE : Course materials will be supplied to the students.

Allied Chemistry Practical-I (For BOT and ZOO)

Inorganic qualitative analysis

(Subject code: 18UCHAP11)

Semester : IAllied : AP1Credit :1Hours/w :2

Qualitative analysis of a simple salt containing one anion and one cation

- Anions : Carbonate, Borate, Fluoride, Oxalate and Phosphate
- **Cations** : Lead, Bismuth, Copper, Cadmium, Cobalt, Nickel, Manganese, Zinc, Barium, Strontium and Ammonium

Note: Laboratory manual will be supplied.

Allied Chemistry-II (for Bot and Zoo)

(Subject code:18UCHA21)

Semester: IIAllied: A2Credits : 4Hours/W :4

Objectives:

- To understand and correctly use terminology in thermodynamics.
- To describe the composition and properties of colloidal dispersions and surface phenomena
- To distinguish between monosaccharides, disaccharides, and polysaccharides
- To study the special arrangement of atoms in a molecule and know how role of hetero atoms in organic compounds
- To understand the basic concepts of quantitative analysis

Outcome: Students Can

- Explain fundamental thermodynamic properties
- List and explain several technological applications of colloids
- Summarize the roles carbohydrates, alkaloids and terpenoids play in biological systems.
- Figure out how many stereoisomers a compound has, and synthesis of a few heterocyclic molecules.
- Prepare standard solutions and standardize an unknown solution.

Unit-I : Thermodynamics

Self study: ideal gas, ideal gas equation, homogeneous reactions and heterogeneous reactions, heat.

- 1.1 Introduction
- 1.2 Basic terminology and functional concepts
- 1.2.1 System, boundary and surrounding
- 1.2.2 Types of systems: open, closed and isolated
- 1.2.3 Properties of a system: extensive and intensive
- 1.2.4 State of a system and state variables (or state functions)
- 1.2.5 Thermodynamic equilibrium
- 1.2.6 Process and types: Isothermal, adiabatic, isochoric, isobaric, cyclic, reversible, and irreversible- comparison between isothermal and adiabatic processes, reversible and irreversible processes.
- 1.2.7 Internal energy as a state function- components of internal energy
- 1.2.8 Work: Thermodynamic concept-types of work
- 1.2.9 Heat : Thermodynamic concept
- 1.2.10 Heat and work as path functions

- 1.3 First law of thermodynamics
- 1.3.1 Statement of the law of conservation of energy
- 1.3.2 Mathematical expression of the law
- 1.4 Application of the law
- 1.4.1 Heat capacity, specific heat capacity and molar heat capacity of a system
- 1.4.2 Relation between molar heat capacities of gases
- 1.5 Enthalpy and enthalpy change
- 1.5.1 Enthalpy as a state function
- 1.5.2 Relation between ΔH and ΔE
- 1.5.3 Enthalpies of reaction, formation and combustion-Definition and illustration- standard state.
- 1.5.4 Calculation of enthalpy change using Hess law
- 1.5.5 Bond enthalpies and bond dissociation enthalpies-Definition and illustration using CH₄ as example (Numerical problems not expected)
- 1.5.6 Spontaneous (natural) process
- 1.5.7 Entropy-it's meaning of disorder
- 1.5.8 Gibb's free energy-its meaning as available energy
- 1.5.9 Criteria for spontaneity

UNIT : II Surface chemistry and Colloidal Chemistry

12 hrs

Self study: Adsorbent, adsorbate, molecular interactions.

- 2.1 Adsorption chemistry-introduction-definition-distinction from adsorption
- 2.2 Adsorption and adsorbate-definition and explanation
- 2.3 Chromatography-introduction
- 2.3.1 Adsorption chromatography-column chromatography, TLC
- 2.3.2 Partition chromatography-ascending chromatography
- 2.3.3 R_f value and its significance
- 2.3.4 Ion exchange chromatography-gas liquid chromatography (GLC), high pressure liquid chromatography
- 2.4 introduction-true solution, coarse suspension, colloidal solution
- 2.4.1 Types of colloidal systems
- 2.4.2 Classification of colloids-Lyophilic and lyophobic sols-a comparison

- 2.4.3 Stability of colloids-origin of charge-electrical double layer-salvation
- 2.4.4 Electrical properties-electrophoresis and electro-osmosis
- 2.4.5 Gels- gelation-classification-properties of gels-hydration, swelling or inhibition, syneresis and thixotropy
- 2.4.6 Emulsions-types of emulsion-identification of emulsion-dilution test, dye test, spreading test, viscosity and electrical conductivity-de-emulsification
- 2.4.7 Application of colloid in food, medicine, industry, purification of water, artificial rain, blue colour of the sky and cleaning action of soap.

12 hrs

UNIT : III Carbohydrates, Alkaloids and Terpenoids

Self study: Examples for food contains carbohydrates

- 3.1 Introduction
- 3.1.1 Monosaccharide
- 3.1.2 Reactions of glucose
- 3.1.3 Open chain structure and ring structure of glucose (elucidation not expected)
- 3.1.4 Epimers, mutarotation
- 3.1.5 Interconversion of glucose into fructose and vice versa
- 3.2 Disaccharides
- 3.2.1 Reactions and structure of sucrose (elucidation nor expected)
- 3.2.2 Structure of maltose and lactose (elucidation not expected)
- 3.3 Polysaccharide
- 3.3.1 Starch- amylase and amyl pectin-type of glycosidic linkage
- 3.3.2 Reaction of starch-action of heat-, hydrolysis and with iodine
- 3.4 Alkaloids
- 3.4.1 Definition, classification, (based on structure) occurrence and extraction
- 3.4.2 General methods of identification-functional nature of oxygen-functional nature of nitrogen-unsaturation-exhaustive methylation

- 3.4.3 Structure of conine
- 3.5 Terpenoids
- 3.5.1 Introduction, classification of terpenoids-Isoprene rule
- 3.5.2 Structure of citral (synthesis not included)

UNIT : IV Stereoisomerism and Heterocyclic compounds 12 hrs

Self study: Isomers, cyclic compounds, practice to draw the structure of simple molecules like H₂O, NH₃ etc.

- 4.1 Optical isomerism
- 4.1.1 Plane polarized light
- 4.1.2 Optical activity
- 4.1.3 Asymmetric carbon-chirality
- 4.1.4 Elements of symmetry-plane of symmetry- axis of symmetry-centre of symmetrydissymmetric
- 4.1.5 Van't Hoff-le Bel theory
- 4.1.6 Optical isomerism of tartaric acid
- 4.1.7 Racemization
- 4.1.8 Resolution of racemic-mixture-biochemical method, chemical method and chromatographic method
- 4.2 Geometrical isomerism
- 4.2.1 Cause for geometrical isomerism
- 4.2.2 Illustration of compounds containing C-C double bond
- 4.3 Heterocyclic compounds
- 4.3.1 Pyrrole
- 4.3.2 Introduction-aromatic character
- 4.3.3 Basic and acidic character of pyrrole

4.4 Pyridine

- 4.4.1 Electronic interpretation of electron-rich centers
- 4.4.2 Reaction of pyridine
- 4.5 Quinoline
- 4.5.1 Skaraup synthesis
- 4.5.2 Reactions of quinoline

UNIT : V Analytical Chemistry-II 12 hrs

- **Self study:** Solvent, solute, solution, saturated solution, unsaturated solution, equivalent weight.
- 5.1 Methods of expressing concentration of solution
- 5.1.1 Normality
- 5.1.2 Molarity
- 5.1.3 Molality
- 5.1.4 Mole fraction
- 5.1.5 Equivalent weight of acids, bases, oxidizing agent and reducing agent
- 5.2 Standard solution-Definition and examples
- 5.2.1 Primary standard
- 5.2.2 Secondary standard
- 5.2.3 Preparation of standard solution
- 5.3 Principles underlying the following types of titration
- 5.3.1 Acid-base titration-theory of indicator why do we use different indicators?
- 5.3.2 Permanganometry
- 5.3.3 Dichrometry
- 5.3.4 Iodometry and Iodimetry

5.3.5 EDTA-complexometry

Note: Course materials will be supplied to the students.

Allied Chemistry Practical-II (For Bot and Zoo)

Inorganic Volumetric Estimations

(Subject Code : 18UCHAP21)

Semester : II	Allied AP2
---------------	------------

Credit : 1

Hours/W:2

S.NO	Estimation	Link	Standard
1	Strong acid	Weak base/ Strong base	Strong acid
2	Strong acid	Strong base	Weak acid
3	Strong base	Strong acid	Weak base
4	Oxalic acid	Potassium permanganate	Oxalic acid
5	Ferrous sulphate	Potassium permanganate	Ferrous ammonium sulphate
6	Potassium dichromate	Ferrous sulphate	Potassium dichromate
7	Ferrous ammonium sulphate	Potassium dichromate	Ferrous sulphate
8	Potassium permanganate	Sodium thiosulphate	Potassium dichromate
9	Magnesium sulphate	EDTA	Zinc sulphate
10	Zinc sulphate	EDTA	Magnesium sulphate

Note: Laboratory manual is supplied.

ALLIED CHEMISTRY 1 (FOR PHYSICS)

SUBJECT CODE:18UCHA31

Semester: III Core : 1

Credits : 4

Hours / W:4

OUTCOMES:

- Understanding atomic structure and periodicity
- Appreciating the mystery of existence of atoms together in molecular form
- Enjoying the regularity in solids

- Understanding acids and bases and redox process
- Application of learnt knowledge in practical experiments.

UNIT 1 ATOMIC STRUCTURE AND PERIODIC TABLE

ATOMIC STRUCTURE

- 1.1 Bohr model of atom
- 1.2 Atomic spectrum of hydrogen and Bohr theory
- 1.3 Refinement of the Bohr theory
- 1.4 Duel nature of electrons particles or waves
- 1.5 Quantum numbers and its significance
- 1.6 Uncertainty principle
- 1.7 Paul's exclusion principle, Hund's rule
- 1.8 Periodic table
- 1.9 Modern periodic table
- 1.10 Long form of periodic table
- 1.11 Division of elements into s,p,d and f blocks
- 1.12 Bohr's aufbau principle- electronic configuration of ground state of atoms up to K(Z=19)
- 1.13 Trends in atomic properties Ionization energy, successive ionization energy, electron affinity, electro negativity Pauling, Mulliken and Allred Rochow's scale

UNIT II STRUCTURAL AND CHEMICAL BONDING

12 hrs

- 2.1 Types of chemical bond
- 2.2 Electrovalent bond (conditions for formation and associated properties)
- 2.3 Covalent bond (conditions for formation and associated properties)
- 2.4 Coordinate covalent bond
- 2.5 Orbital overlap- s-s, s-p, p-p overlap
- 2.6 Sigma and pi bond formation of N_2 and O_2 properties
- 2.7 Polar and non-polar molecules
- 2.8 Dipole moment and its applications
- 2.9 VSPER theory application to CH_4 , NH_3 and H_2O
- 2.10 Molecular orbital theory, bonding, antibonding and non-bonding orbitals
- 2.11 MO diagrams for H_2 , He_2 and O_2 bond order

UNIT III SOLID STATE AND ENERGETICS

12 hrs

- 3.1 Macroscopic properties of solids
- 3.2 Types of characteristics of crystals
- 3.3 Covalent solids- structure and properties of diamond and graphite

- 3.4 Ionic crystals solid- NaCl
- 3.5 Metallic crystals
- 3.6 Molecular crystals- intermolecular forces
- 3.7 Metals- free electron theory and bond theory of metallic bond
- 3.8 Superconductors
- 3.9 Lattice energy
- 3.10 Born-Haber cycle
- 3.11 Law of conversation of energy
- 3.12 Enthalpy of reactions
- 3.13 Entropy and Gibbs energy
- 3.14 Relationship between Gibbs energy and equilibrium

UNIT IV ACID, BASES AND REDOX PROCESSES

- 4.1 Concept of acids and bases
- 4.2 Arrhenius concept
- 4.3 Bronsted- Lowry concept conjugate acids and bases
- 4.4 Lewis concept
- 4.5 Effect of solvents and substituents on relative strengths of acids and bases
- 4.6 Hydrolysis
- 4.7 Ionization of water
- 4.8 pH scale definition of pOH , pK_a , pK_b simple numerical problems
- 4.9 Buffer solution
- 4.10 Redox processes
- 4.11 Electronic concept of oxidation and reduction
- 4.12 Oxidation number- rules
- 4.13 Calculation of oxidation number of elements in neutral molecules and in ions
- 4.14 Oxidizing agent and reducing agent
- 4.15 Balancing ionic equation by oxidation number method

UNIT V PRACTICAL CHEMISTRY-1

- 5.1 Introduction acquaintance with chemical laboratory laboratory equipments solid reagents, liquid reagents and test papers -laboratory instructions and some don'ts Bunsen burner (self study)
- 5.2 Chemistry involved in the analysis of anion and cations
- 5.3 Dry tests (action of heat, flame test, filter ash test)
- 5.4 Wet test (with acids, with Na₂CO₃ extract)
- 5.5 Elimination of interfering anions and preparation of original solutions
- 5.6 Classification of cations into analytical groups

12 hrs

- 5.7 Condition for precipitation, application of solubility product and common ion effect in qualitative analysis
- 5.8 Cleaning
- 5.9 Soap reaction with acids and hard water effect of high temperature
- 5.10 Chemistry of cleaning soap micelle cleaning action of soap
- 5.11 Dry cleaning general rules for stain removal chemicals used for spots and stains from fabrics
- 5.12 Synthetic detergent and their advantages over soap
- 5.13 Safety in laboratory
- 5.14 General safety measures (safety equipment, safety notices, personal protection, dangers to avoid)
- 5.15 Chemical hazards (corrosive, irritant substances, toxic compounds, flammable explosives)
- 5.16 Physical hazards (fire, pressure) fire extinguisher
- 5.17 Spillage and waste disposal
- 5.18 First aid (immediate assistance, burns, eye injuries, bleeding, toxic materials) first aid kit

Note: Course materials will be supplied to the students

ALLIED CHEMISTRY PRACTICAL – I (FOR PHYSICS) Inorganic qualitative analysis (Subject Code: 18UCHAP31)

Semester:III

Allied: AP3

Credit: 1

Qualitative analysis of a simple salt containing one anion and one cation

ANIONS: Carbonate, Borate, Fluoride, Oxalate and Phosphate

- **CATIONS:** Lead, Bismuth, Copper, Cadmium, Cobalt, Nickel, Manganese, Zinc, Barium, Strontium and Ammonium
- Note: Laboratory manual is supplied

ALLIED CHEMISTRY II (FOR PHYSICS)

SUBJECT CODE: 18UCHA41

Semester : IV

Core:1

Credits : 4

Hours / W:4

OUTCOME:

- Learning nomenclature of organic compounds
- Development of knowledge in the area of electromotive force
- Understanding various processes involved in metallurgy
- Knowing application of chemistry in industries
- Development in practical knowledge

UNIT I NOMENCLATURE AND ISOMERISM OF ORGANIC COMPOUNDS 12 hrs

- 1.1 Nomenclature of organic compounds
- 1.1.1 Alkane, alkene, alkyne, cycloalkane and alkyl groups
- 1.1.2 IUPAC names of alcohols, acids, aldehyde and ketones
- 1.2 Hybridization
- 1.2.1 Need for the concept of hybridization
- 1.2.2 sp, sp^2 and sp^3 hybridization with suitable examples
- 1.3 Isomerism in organic compounds
- 1.3.1 Structural isomerism- types with example
- 1.3.2 Stereoisomerism conformational, geometrical and optical isomerism
- 1.3.3 Geometrical isomerism cis and trans nomenclature
- 1.3.4 Optical isomerism- elemental of symmetry -chirality -optical activity-enantiomers,

diastereomers, mesomer and racemic mixture -optical activity exhibited by lactic acid and tartaric acid

UNIT II ELECTROMOTIVE FORCE

- 2.1 Introduction
- 2.2 Requirements of an electrochemical change
- 2.3 Electrochemical cells difference between electrolytic and galvanic cells
- 2.4 Salt bridge
- 2.5 Electrode potential and standard electrode potential
- 2.6 Electrochemical series and applications-Anamoly examples such as Al and Fe can be explained,
- 2.7 Conventions used in electrode representation and in cell representation
- 2.8 Types of electrodes description of hydrogen, calomel and glass electrodes -Nernst equation
- 2.9 Weston cadmium cell

- 2.10 Experimental determination of a cell emf and determination of electrode potential simple calculations
- 2.11 Potentiometric titrations and their advantages- principle and method of acid base, redox and precipitation titrations
- 2.12 Determination of pH using hydrogen, glass and quinhydrone electrodes

UNIT III METALLURGICAL PRINCIPLES AND POLYMERS 12 hrs

- 3.1 Minerals and ores
- 3.2 Native, sulphide, oxide, carbonate, halide and sulphate ores
- 3.3 Metallurgy -extraction metals

3.4 Concentration of ores -hand picking, gravity separation, magnetic separation, froth flotation processes and leaching

- 3.5 Calcination and roasting
- 3.6 Purification of metals electrolysis and zone refining method
- 3.7 Polymers-classification
- 3.8 Properties of polymers
- 3.9 Mechanical, physical, thermal, optical, electrical and chemical properties
- 3.10 Preparation and uses of thermoplastics- polyethylene and PVC
- 3.11 Preparation and uses of thermosetting plastics nylon, epoxy resins, bakelite
- 3.12 Rubber and uses of rubber
- 3.13 Vulcanization
- 3.14 Bio-polmers

(A topic on **Conducting polymers** and its application in electronic industry will be beneficial to the students)

UNIT IV INDUSTRIAL CHEMISTRY AND MAGNETO CHEMISTRY 12 hrs

- 4.1 Silicones preparation, properties and uses
- 4.2 Manufacture and types of glass

- 4.3 Cement composition, manufacture and setting of cement
- 4.4 Fuel gases manufacture, composition and uses of producer gas, water gas, LPG and bio gas
- 4.5 Softening of water: Ion exchange, electro dialysis and reverses osmosis methods
- 4.6 Volume, mass and molar susceptibility
- 4.7 Diamagnetism and temperature independent paramagnetism
- 4.8 Temperature dependent paramagetism
- 4.9 Ferro and antiferromagnetism
- 4.10 Measurements of magnetic susceptibility
- 4.11 Applications of magnetic susceptibility studies

(Concepts of thermodynamics and crystal structures can be included for Physics students)

UNIT V PRACTICAL CHEMISTRY-II AND SOLVENT EXTRACTION 12 hrs

- 5.1 Introduction -definition of various terms (titrations, volumetric analysis, titrant indicator, end point -requirements of the reaction selected for the titration -commom types of titration
- 5.2 Law of equivalence- equivalent weight of acids, bases, oxidizing agents, reducing agents and salts calculation of molecular weights and equivalent weights
- 5.3 Requirements of a primary standard
- 5.4 Secondary standards
- 5.5 Numerical problems in the preparation of solutions
- 5.6 Law of normalities- preparation of HCl, H₂SO₄,HNO₃(approximately 0.1N) from standard acids
- 5.7 Principles behind
- 5.7.1 Acid base titration pH verses volume curves, choice of indicates form different acid base titrations
- 5.7.2 Permanganimetry
- 5.7.3 Dichrometry-diphenylamine and potassium ferricyanide as indicators
- 5.7.4 Iodimetry- Preparation of iodine and starch solutions starch as indicators
- 5.7.5 Iodometry- role of $KMnO_4$ and $K_2Cr_2O_7$
- 5.7.6 Solution- Nernst distribution law and solvent extraction -numerical problems

Note: Course materials will be supplied to the students

ALLIED CHEMISTRY PRACTICAL – II (FOR PHYSICS) Inorganic qualitative analysis (Subject Code: 18UCHAP41)

Semester: IV

Allied: AP4

Credit: 1

Hours/W: 2

S. No	Estimation	Link	Standard
1	Strong Acid	Weak Base/Strong Base	Strong Base
2	Strong Acid	Strong Base	Weak Acid
3	Strong Base	Strong Acid	Weak Base
4	Oxalic acid	Potassium Permanganate	Oxalic acid
5	Ferrous Sulphate	Potassium Permanganate	Ferrous Ammonium Sulphate
6	Potassium dichromate	Ferrous Sulphate	Potassium dichromate
7	Ferrous Ammonium	Potassium dichromate	Ferrous Sulphate
	Sulphate		
8	Potassium Permanganate	Sodium thiosulphate	Potassium dichromate
9	Magnesium Sulphate	EDTA	Zinc Sulphate
10	Zinc Sulphate	EDTA	Magnesium Sulphate

Note: Laboratory manual is supplied